\(\int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx\) [116]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 316 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}} \]

[Out]

1/2*a^2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/d/e^(5/2)*2^(1/2)-1/2*a^2*arctan(1+2^(1/2)*(e*tan(d*x+c
))^(1/2)/e^(1/2))/d/e^(5/2)*2^(1/2)+1/4*a^2*ln(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/d/e^(5
/2)*2^(1/2)-1/4*a^2*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/d/e^(5/2)*2^(1/2)+2/3*a^2*(sin
(c+1/4*Pi+d*x)^2)^(1/2)/sin(c+1/4*Pi+d*x)*EllipticF(cos(c+1/4*Pi+d*x),2^(1/2))*sec(d*x+c)*sin(2*d*x+2*c)^(1/2)
/d/e^2/(e*tan(d*x+c))^(1/2)-4/3*a^2/d/e/(e*tan(d*x+c))^(3/2)-4/3*a^2*sec(d*x+c)/d/e/(e*tan(d*x+c))^(3/2)

Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 20, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.640, Rules used = {3971, 3555, 3557, 335, 217, 1179, 642, 1176, 631, 210, 2689, 2694, 2653, 2720, 2687, 32} \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {2 a^2 \sqrt {\sin (2 c+2 d x)} \sec (c+d x) \operatorname {EllipticF}\left (c+d x-\frac {\pi }{4},2\right )}{3 d e^2 \sqrt {e \tan (c+d x)}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}} \]

[In]

Int[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(5/2),x]

[Out]

(a^2*ArcTan[1 - (Sqrt[2]*Sqrt[e*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(5/2)) - (a^2*ArcTan[1 + (Sqrt[2]*Sqrt[e
*Tan[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d*e^(5/2)) + (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] - Sqrt[2]*Sqrt[e*Tan[c
 + d*x]]])/(2*Sqrt[2]*d*e^(5/2)) - (a^2*Log[Sqrt[e] + Sqrt[e]*Tan[c + d*x] + Sqrt[2]*Sqrt[e*Tan[c + d*x]]])/(2
*Sqrt[2]*d*e^(5/2)) - (4*a^2)/(3*d*e*(e*Tan[c + d*x])^(3/2)) - (4*a^2*Sec[c + d*x])/(3*d*e*(e*Tan[c + d*x])^(3
/2)) - (2*a^2*EllipticF[c - Pi/4 + d*x, 2]*Sec[c + d*x]*Sqrt[Sin[2*c + 2*d*x]])/(3*d*e^2*Sqrt[e*Tan[c + d*x]])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2687

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(b*x)
^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] &&  !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])

Rule 2689

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1))), x] - Dist[(m + n + 1)/(b^2*(n + 1)), Int[(a*Sec[e + f*x])^m*(
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]

Rule 2694

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]), Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f}, x
]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3555

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3557

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 3971

Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {a^2}{(e \tan (c+d x))^{5/2}}+\frac {2 a^2 \sec (c+d x)}{(e \tan (c+d x))^{5/2}}+\frac {a^2 \sec ^2(c+d x)}{(e \tan (c+d x))^{5/2}}\right ) \, dx \\ & = a^2 \int \frac {1}{(e \tan (c+d x))^{5/2}} \, dx+a^2 \int \frac {\sec ^2(c+d x)}{(e \tan (c+d x))^{5/2}} \, dx+\left (2 a^2\right ) \int \frac {\sec (c+d x)}{(e \tan (c+d x))^{5/2}} \, dx \\ & = -\frac {2 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}+\frac {a^2 \text {Subst}\left (\int \frac {1}{(e x)^{5/2}} \, dx,x,\tan (c+d x)\right )}{d}-\frac {\left (2 a^2\right ) \int \frac {\sec (c+d x)}{\sqrt {e \tan (c+d x)}} \, dx}{3 e^2}-\frac {a^2 \int \frac {1}{\sqrt {e \tan (c+d x)}} \, dx}{e^2} \\ & = -\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {a^2 \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (e^2+x^2\right )} \, dx,x,e \tan (c+d x)\right )}{d e}-\frac {\left (2 a^2 \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\sin (c+d x)}} \, dx}{3 e^2 \sqrt {\cos (c+d x)} \sqrt {e \tan (c+d x)}} \\ & = -\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {\left (2 a^2\right ) \text {Subst}\left (\int \frac {1}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{d e}-\frac {\left (2 a^2 \sec (c+d x) \sqrt {\sin (2 c+2 d x)}\right ) \int \frac {1}{\sqrt {\sin (2 c+2 d x)}} \, dx}{3 e^2 \sqrt {e \tan (c+d x)}} \\ & = -\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}}-\frac {a^2 \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{d e^2}-\frac {a^2 \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{d e^2} \\ & = -\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}}+\frac {a^2 \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}+\frac {a^2 \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 d e^2}-\frac {a^2 \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \tan (c+d x)}\right )}{2 d e^2} \\ & = \frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}}-\frac {a^2 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}} \\ & = \frac {a^2 \arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}-\frac {a^2 \arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d e^{5/2}}+\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {a^2 \log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} d e^{5/2}}-\frac {4 a^2}{3 d e (e \tan (c+d x))^{3/2}}-\frac {4 a^2 \sec (c+d x)}{3 d e (e \tan (c+d x))^{3/2}}-\frac {2 a^2 \operatorname {EllipticF}\left (c-\frac {\pi }{4}+d x,2\right ) \sec (c+d x) \sqrt {\sin (2 c+2 d x)}}{3 d e^2 \sqrt {e \tan (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 15.82 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.71 \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=-\frac {a^2 \cos ^2\left (\frac {1}{2} (c+d x)\right ) \cos (c+d x) \cot \left (\frac {1}{2} (c+d x)\right ) \sec ^4\left (\frac {1}{2} \arctan (\tan (c+d x))\right ) \left (16 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},\frac {1}{2},\frac {1}{4},-\tan ^2(c+d x)\right )+16 \operatorname {Hypergeometric2F1}\left (-\frac {3}{4},1,\frac {1}{4},-\tan ^2(c+d x)\right )+3 \sqrt {2} \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{24 d e^2 \sqrt {e \tan (c+d x)}} \]

[In]

Integrate[(a + a*Sec[c + d*x])^2/(e*Tan[c + d*x])^(5/2),x]

[Out]

-1/24*(a^2*Cos[(c + d*x)/2]^2*Cos[c + d*x]*Cot[(c + d*x)/2]*Sec[ArcTan[Tan[c + d*x]]/2]^4*(16*Hypergeometric2F
1[-3/4, 1/2, 1/4, -Tan[c + d*x]^2] + 16*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2] + 3*Sqrt[2]*(2*ArcTan
[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x
]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Tan[c + d*x]^(3/2)))/(d*e^2*Sqrt[e*Ta
n[c + d*x]])

Maple [A] (verified)

Time = 5.55 (sec) , antiderivative size = 483, normalized size of antiderivative = 1.53

method result size
parts \(\frac {2 a^{2} e \left (-\frac {1}{3 e^{2} \left (e \tan \left (d x +c \right )\right )^{\frac {3}{2}}}-\frac {\left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \tan \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \tan \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \tan \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \tan \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 e^{4}}\right )}{d}-\frac {2 a^{2}}{3 d e \left (e \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {a^{2} \sqrt {2}\, \left (1-\cos \left (d x +c \right )\right )^{2} \left (2 \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {2-2 \csc \left (d x +c \right )+2 \cot \left (d x +c \right )}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right ) \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-\left (1-\cos \left (d x +c \right )\right )^{4} \csc \left (d x +c \right )^{4}+1\right ) \csc \left (d x +c \right )^{2}}{3 d \sqrt {\left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\left (1-\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \csc \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{2} \left (-\frac {e \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {5}{2}}}\) \(483\)
default \(\frac {a^{2} \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \left (3 i \sin \left (d x +c \right ) \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 i \sin \left (d x +c \right ) \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}+\frac {i}{2}, \frac {\sqrt {2}}{2}\right )-3 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticPi}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {1}{2}-\frac {i}{2}, \frac {\sqrt {2}}{2}\right )+2 \sin \left (d x +c \right ) \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )}\, \sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}\, \sqrt {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}\, \operatorname {EllipticF}\left (\sqrt {\csc \left (d x +c \right )-\cot \left (d x +c \right )+1}, \frac {\sqrt {2}}{2}\right )-4 \sqrt {2}\, \cos \left (d x +c \right )\right ) \csc \left (d x +c \right ) \sec \left (d x +c \right )}{6 e^{2} d \sqrt {e \tan \left (d x +c \right )}}\) \(496\)

[In]

int((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

2*a^2/d*e*(-1/3/e^2/(e*tan(d*x+c))^(3/2)-1/8/e^4*(e^2)^(1/4)*2^(1/2)*(ln((e*tan(d*x+c)+(e^2)^(1/4)*(e*tan(d*x+
c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*tan(d*x+c)-(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2
^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*tan(d*x+c))^(1/2)+1)))-2/3*a^2/d/e
/(e*tan(d*x+c))^(3/2)+1/3*a^2/d*2^(1/2)*(1-cos(d*x+c))^2*(2*(csc(d*x+c)-cot(d*x+c)+1)^(1/2)*(2-2*csc(d*x+c)+2*
cot(d*x+c))^(1/2)*(cot(d*x+c)-csc(d*x+c))^(1/2)*EllipticF((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2*2^(1/2))*(-cot(d
*x+c)+csc(d*x+c))-(1-cos(d*x+c))^4*csc(d*x+c)^4+1)/((1-cos(d*x+c))^3*csc(d*x+c)^3+cot(d*x+c)-csc(d*x+c))^(1/2)
/((1-cos(d*x+c))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*csc(d*x+c))^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^2/(-e/(
(1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-cot(d*x+c)+csc(d*x+c)))^(5/2)*csc(d*x+c)^2

Fricas [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=a^{2} \left (\int \frac {1}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \frac {2 \sec {\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx + \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (e \tan {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx\right ) \]

[In]

integrate((a+a*sec(d*x+c))**2/(e*tan(d*x+c))**(5/2),x)

[Out]

a**2*(Integral((e*tan(c + d*x))**(-5/2), x) + Integral(2*sec(c + d*x)/(e*tan(c + d*x))**(5/2), x) + Integral(s
ec(c + d*x)**2/(e*tan(c + d*x))**(5/2), x))

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\int { \frac {{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}{\left (e \tan \left (d x + c\right )\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a+a*sec(d*x+c))^2/(e*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^2/(e*tan(d*x + c))^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^2}{(e \tan (c+d x))^{5/2}} \, dx=\int \frac {{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2}{{\left (e\,\mathrm {tan}\left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(5/2),x)

[Out]

int((a + a/cos(c + d*x))^2/(e*tan(c + d*x))^(5/2), x)